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Abstract 

Background: Ambient air pollution has been linked to the development of gestational diabetes 

mellitus (GDM). However, evidence of the association is very limited, and no study has 

estimated the effects of ozone. 

Methods: We used Florida birth vital statistics records to investigate the association between the 

risk of GDM and two air pollutants (PM2.5 and O3) among 410,267 women who gave birth in 

Florida between 2004 and 2005. Individual air pollution exposure was assessed at women’s 

home address at time of delivery using the Hierarchical Bayesian space-time statistical model. 

We further estimated associations between air pollution exposures during different trimesters and 

GDM. 

Results: After controlling for nine covariates, increased odds of GDM with per 5 µg/m3 increase 

in PM2.5 (ORTrimester1=1.16; 95% CI: 1.11, 1.21; ORTrimester2=1.15; 95% CI: 1.10, 1.20; 

ORPregnancy=1.20; 95% CI: 1.13, 1.26) and per 5 ppb increase in O3 (ORTrimester1=1.09; 95% CI: 

1.07, 1.11; ORTrimester2=1.12; 95% CI: 1.10, 1.14; ORPregnancy=1.18; 95% CI: 1.15, 1.21) were 

observed during both the first trimester and second trimester as well as the full pregnancy in 

single-pollutant models. Comparing to the single-pollutant model, the ORs for O3 were almost 

identical in the co-pollutant model. However, the ORs for PM2.5 during the first trimester and the 

full pregnancy attenuated, and no association was observed for PM2.5 during the second trimester 

in the co-pollutant model (OR=1.02; 95% CI: 0.98, 1.07). 

Conclusion: This population-based study suggests that exposure to air pollution during 

pregnancy is associated with increased risk of GDM in Florida, USA.  
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Introduction 

Gestational diabetes mellitus (GDM) is a common complication during pregnancy. It is defined 

as any degree of glucose intolerance with onset or first recognition during pregnancy (American 

Diabetes Association 2013). GDM complicates up to 14% of all pregnancies depending on the 

populations observed. More than 200,000 cases were reported annually in the United States 

(American Diabetes Association 2013). GDM has adverse effects on both the mother and the 

developing fetus. About one-third of women with GDM will eventually develop type 2 diabetes 

(Linné et al. 2002), and women with GDM also have higher long-term risks of cardiovascular 

diseases compared to those without GDM (Kitzmiller et al. 2007). In children, GDM has been 

associated with both perinatal and long-term adverse health outcomes such as macrosomia 

(Hughes et al. 1997), shoulder dystocia (Athukorala et al. 2007), birth injuries (Mitanchez 2010), 

sustained glucose tolerance impairment (Silverman et al. 1995), obesity (Pettitt et al. 1985), and 

impaired intellectual abilities (Rizzo et al. 1997). GDM has also been associated with metabolic 

disturbances in offspring of mothers with GDM (Boerschmann et al. 2010; Clausen et al. 2008; 

Lawlor et al. 2011), and the prevalence of type-2 diabetes or pre-diabetes at 18–27 years of age 

was almost eight times higher among offspring of women with GDM compared with other 

children in a case-control study (Clausen et al. 2008). Although previous studies have shown that 

treatment of GDM can reduce serious perinatal morbidity such as macrosomia at birth (Crowther 

et al. 2005), a recent study found no significant difference in BMI Z-scores or BMI ≥85th 

percentile in children at 4–5 years of age whose mothers were treated for GDM (n = 94) 

compared with children whose mothers had GDM but received only routine care (n = 105)  

(Gillman et al. 2010). However, the sample size of this study was relatively small and may be 

underpowered. 
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Despite great improvements in air quality following the Clean Air Act (1963), air pollution 

remains a significant public health problem in the United States. According to the State of the 

Air 2013 report by the American Lung Association, 41% of the population in the United States 

still lives in counties that have unhealthy levels of air pollution (American Lung Association 

2013). Evidence on the effects of air pollution on diabetes mellitus in the general population has 

been reported in several recent epidemiological studies. A study of the Danish Diet, Cancer and 

Health cohort reported that traffic-related air pollution, using NO2 as a proxy, was associated 

with higher mortality from diabetes (Raaschou-Nielsen et al. 2013). Two studies in North 

America reported positive associations of NO2 and PM2.5 with the prevalence of diabetes (Brook 

et al. 2008; Pearson et al. 2010). In addition, positive associations have been found between air 

pollution and insulin resistance, the pathological hallmark underlying diabetes (Andersen et al. 

2012; Chuang et al. 2011; Coogan et al. 2012; Kelishadi et al. 2009; Kim and Hong 2012; 

Kramer et al. 2010; Puett et al. 2011; Sun et al. 2013).  

Although the biological mechanisms leading to GDM are still unclear, it is plausible that air 

pollution during pregnancy may increase the risk of GDM by inducing oxidative stress, and 

consequently inflammation, insulin resistance, dyslipidemia, and systemic metabolic dysfunction 

(Andersen et al. 2012; Chuang et al. 2011; Coogan et al. 2012; Everett et al. 2010; Hotamisligil 

et al. 1993; Kelishadi et al. 2009; Kim and Hong 2012; Kramer et al. 2010; Lamb and Goldstein 

2008; Puett et al. 2011; Sun et al. 2006; Sun et al. 2013). While evidence of adverse effects of air 

pollution on birth defects and pregnancy complications such as gestational hypertension has been 

widely reported in the last decade (Šrám et al. 2005; Xu et al. 2014), studies focusing on the 

association between ambient air pollution and GDM are still very limited. To our knowledge, 

only three previous studies have investigated air pollution and GDM. Malmqvist et al. reported a 
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positive association between NOx exposure and GDM (Malmqvist et al. 2013), while an earlier 

study reported no association (van den Hooven et al. 2009). A recent study found that exposure 

to PM2.5 and other traffic-related pollutants during pregnancy has been associated with impaired 

glucose tolerance, but not GDM in women from Boston, USA (Fleisch et al. 2014). Given the 

inconclusive results and limited types of pollutants examined in previous studies, investigation of 

the association between GDM and other criteria air pollutants such as ozone (O3) is warranted. In 

this study, we analyzed Florida birth vital statistics records comprising 410,267 women who 

gave birth during 2004-2005, to examine the association between the risk of GDM and two 

ambient air pollutants, PM2.5 and O3, assessed using the Hierarchical Bayesian space-time 

statistical model (HBM) developed by the US EPA and CDC’s National Environmental Public 

Health Tracking Network (U.S. EPA 2014). We also investigated whether associations between 

exposure to air pollution and GDM varied among different gestational periods (trimesters and 

full pregnancy). 

Materials and Methods 

Study population 

We obtained birth record data from the Bureau of Vital Statistics & Office of Health Statistics 

and Assessment, Florida Department of Health (Jacksonville, Florida, 

http://www.floridahealth.gov/certificates/certificates/). The data included all registered live births 

in Florida, USA between January 1, 2004 and December 31, 2005 (n=445,028). Births with 

maternal residential addresses outside Florida (n=4,672) were excluded. We used ArcGIS V10.1 

software (ESRI, Redlands, California, USA) to geocode the mother’s residential address at birth, 

and 439,370 cases (99.8%) were successfully geocoded. Cases whose maternal residential 

address could not be geocoded were excluded (n=986). We further excluded 937 cases because 
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of missing values related to gestational age. In addition, we excluded women who had non-

singleton deliveries (n=13,367), previous preterm births (n=5,591), or prepregnancy diabetes 

mellitus (n=2,821). Births with congenital abnormalities (n=5,450), with a birthweight <400 g 

(n=240), or with a gestational age <24 or >42 weeks (n=697) were also excluded. Following 

these exclusion criteria a total of 410,267 women remained in the study population. The research 

protocol for this study was approved by the Institutional Review Board at the University of 

Florida and the Florida Department of Health. The study was exempt from informed consent 

requirements since it involves no more than a minimal risk to the privacy of individuals and the 

research could not practicably be conducted without this exemption. 

Outcome assessment 

All pregnant women are requested to screen for GDM through an oral glucose challenge test 

(OGCT) between the 24th and 28th weeks of the pregnancy in Florida. This test requires each 

pregnant woman to drink about 5 ounce of a syrupy glucose solution that contains 50 grams of 

sugar and then have her blood drawn an hour after drinking the solution. If a blood glucose level 

reaches above 140 mg/dL 1 hour after the OGCT, it indicates the possibility of GDM. Then, the 

pregnant woman is further referred to another 3-hour fasting 100-g oral glucose tolerance test 

(OGTT). The test measures fasting blood glucose level and blood glucose levels at one, two and 

three hours after drinking the solution. The following values are considered to be abnormal 

during the OGTT: Fast blood glucose level ≥95 mg/dl, 1 hour blood glucose ≥180 mg/dl, 2 hour 

blood glucose ≥155 mg/dl and 3 hour blood glucose ≥140 mg/dl. Pregnant women are classified 

as having GDM if two abnormal values are recorded during the OGTT  (American Diabetes 

Association 2003).  
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Air pollution exposure assessment 

Air pollution exposure data was obtained from the EPA and CDC’s National Environmental 

Public Health Tracking Network (2003-2005) (U.S. EPA 2014). The US EPA provided the 

hierarchical Bayesian space-time statistical modeling (HBM) data from 2001-2008 for two air 

pollutants, PM2.5 and O3 with spatial resolutions of 12km×12km and 36km×36km across the 

continental areas in US. Daily air pollution concentration for each grid was also included. 

Compared to the widely-used air monitoring data from EPA’s Air Quality System (AQS, 

http://www.epa.gov/airquality/airdata), the HBM data could provide pollutant values at 

unobserved locations across the entire spatial field of interest. The EPA has used two important 

advanced methods, the Community Multiscale Air Quality (CMAQ) model, and the Hierarchical 

Bayesian space-time statistical model (HBM) (McMillan et al. 2010), to produce the interpolated 

concentrations of air pollutants in space and time. The HBM approach combines the AQS 

monitoring data with CMAQ modeled data, which includes emission, meteorology, and chemical 

modeling components, to predict air quality data for a specific time and spatial scale (McMillan 

et al. 2010). Given the limited and sparsely located air monitors in Florida, we decided to use the 

12km grid output from the HBM data which can account for the poor spatial coverage of air 

monitoring data.  

Each mother’s geocoded residential address at the time of their child’s birth was spatially linked 

to the corresponding grid of the HBM data. Exposures were calculated as daily concentrations 

averaged over each of the first two trimesters (trimester 1: 1-13 weeks and trimester 2: 14-26 

weeks) and the full gestational period determined by gestational age and delivery date of each 

woman. Gestational age was mainly determined by ultrasound. When ultrasound data was not 

available, clinical examination or last menstrual period was used to estimate gestational age. 
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Covariates 

Information on maternal characteristics such as age, race/ethnicity, marital status, pregnancy 

smoking status, season and year of conception, and prenatal care status were obtained directly 

from the births records. Maternal age at delivery was categorized into six groups, with 5-year 

increments for women aged 20-40 years old as well as two additional groups for <20 and ≥40 

years old. Race/ethnicity was categorized as non-Hispanic White, non-Hispanic Black, Mexican 

American, Puerto Rican, Cuban American, Haitian American, and others. In addition, a 

dichotomous variable was used to indicate marital status. Maternal education was divided into 

three categories: <high school, high school or equivalent, and >high school. Pregnancy smoking 

status was categorized into three levels based on self-reported number of cigarettes smoked per 

day during pregnancy: non-smokers, smokers with <10 cigarettes/day, and smokers with ≥10 

cigarettes/day. Season [warm (June-November) or cool (December-May)] and year (2003, 2004, 

or 2005) of conception were also treated as categorical variables. Prenatal care status was 

categorized into five groups: no care, began in first trimester, second trimester, or third trimester, 

as well as an additional group for subjects with missing values. Furthermore, we extracted census 

block group level median household income from the 2000 Census, and linked it to each woman.  

Household income was categorized into quartiles (<US$29,663, US$29,663-US$38,056, 

US$ 38,056-US$49,375, and ≥US$49,375). We also obtained cartographic boundary file for 

urban areas from the 2000 Census to determine the urbanization status (urban or rural) where 

each woman lived. No information was available on other risk factors for GDM such as maternal 

pre-pregnancy BMI, family history of type 2 diabetes, and low physical activity. 
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Statistical analysis 

Distribution of categorical covariates and continuous exposures between women with GDM and 

those without GDM were examined. Logistic regression models were used to investigate the 

association between exposure to air pollution during different trimesters of pregnancy and risks 

of GDM. Subjects with missing values of maternal age (n=45), race/ethnicity (n=6), education 

(n=3,821), marital status (n=83) were excluded, leaving 13,943 women with GDM out of a total 

of 406,334 women with complete covariate data. PM2.5 and O3 were analyzed as continuous 

variables. Both an unadjusted model and an adjusted model controlling for maternal age, 

race/ethnicity, education, marital status, prenatal care, season and year of conception, 

urbanization, and median household income at census block group level were used. ORs and 95% 

CI (per 5 µg/m3 increase in PM2.5 or per 5 ppb increase in O3) were reported for each pollutant 

during specific pregnancy periods. Co-pollutant logistic models were also implemented to 

evaluate potential confounding by co-pollutants.  

Sensitivity analyses: We conducted several sensitivity analyses to test the robustness of our 

results. Firstly, to account for the potential bias created by using an indicator for missing data of 

prenatal care, multiple imputation was conducted for all missing data using chained equations 

(White et al. 2011). All covariates as well as exposure and outcome variables were included in 

the imputation process, and 50 imputed datasets were generated. Secondly, to account for the 

potential underdiagnoses of GDM, an underreported rate of 0.5% and 1.0% was assumed among 

women without GDM, and simulated datasets were generated by randomly assigning 0.5% and 

1.0% of subjects without GDM as GDM cases with 500 repeats using the Monte Carlo method. 

Then, we made the comparisons between the results from the simulated data and our original 

results to check whether the underdiagnosed cases have influenced the observed effects. Thirdly, 
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to account for the potential misclassification of exposure, we performed two sets of sensitivity 

analyses. In the first set of capture-area analyses, only women living within 5 miles from any 

AQS monitors were included, and two separated analyses were conducted for all eligible women 

and only for eligible women with non-missing data for at least 75% of days. In the second set of 

analyses, we used interpolated 1km×1km data for the exposure assessment. To create the 

1km×1km exposure field, we applied a bicubic spline to the 12km×12km gridded HBM product 

and output on a 1km×1km grid that included the original 12km vertices. This approach provides 

finer resolution, but cannot reproduce sub-12km concentration peaks or troughs. Fourthly, we 

performed the analyses without adjusting for season of conception to account for the possibility 

that conception season may adjust away all seasonal influences on the variation in the pollutants 

such that only spatial differences were left, which might be much more easily confounded by 

SES related factors. We also performed the analyses after additionally adjusting for smoking 

during pregnancy. Finally, to account for the potential over adjusting of urbanization due to its 

correlation with air pollutants, we performed a stratified analyses by urban-rural areas. All 

statistical analyses were conducted using SAS V9.3 (Cary, North Carolina, USA). 

Results 

Of the 410,267 women included in this study, 14,032 (3.4%) had GDM, including 406,334 with 

complete data for all covariates (n = 13,943 with GDM). Table 1 shows the distribution of 

exposures to PM2.5 and O3 for each pregnancy period analyzed in this study. Women with GDM 

had slightly higher levels of PM2.5 and O3 exposure compared to those without GDM during all 

pregnancy periods (all p<0.001). Weak correlations were observed between PM2.5 and O3 in all 

gestational periods (Pearson’s correlation coefficient range from 0.21 to 0.39).  
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Table 2 shows the demographic characteristics of women by GDM status. Women with GDM 

were older and less likely to belong to non-Hispanic Black racial/ethnic categories. Higher 

proportions of women with GDM were married and had higher education and income levels. 

GDM cases were more likely to be observed among women who started prenatal care early and 

whose conception began in the warm season or recent years.  

Table 3 provides the unadjusted and adjusted ORs of single-pollutant logistic regression models 

predicting GDM from exposure to PM2.5 and O3 during different pregnancy periods. After 

controlling for all nine covariates, increased odds of GDM for per 5 µg/m3 increase in PM2.5 

were observed during both the first and second trimesters (ORTrimester1=1.16; 95% CI: 1.11, 1.21; 

ORTrimester2=1.15; 95% CI: 1.10, 1.20) and the full pregnancy (OR=1.20; 95% CI: 1.13, 1.26). 

Associations were also found between GDM and O3. The odds of GDM were higher for per 5 

ppb increase in exposure to O3 during the first and second trimesters (ORTrimester1=1.09; 95% CI: 

1.07, 1.11; ORTrimester2=1.12; 95% CI: 1.10, 1.14), and over the course of the entire pregnancy 

(OR=1.18; 95% CI: 1.15, 1.21).  

The results from the sensitivity analyses were presented in the Supplemental Materials. 

Specifically, multiple imputation was conducted in the first set of sensitivity analyses to assess 

the potential effects of missing data on the results, and we observed ORs almost identical to the 

original results (see Supplemental Materials, Table S1). Secondly, Monte Carlo method was used 

to generate two sets of simulated datasets assuming the underreported rate of GDM was 0.5% 

and 1.0%. Compared to the original results, the ORs from the simulated datasets slightly 

attenuated, but the conclusions remain consistent (see Supplemental Material, Table S2). Thirdly, 

we examined the effects of potential misclassifications of exposure on the results separately 

using capture-area analyses and the interpolated 1km×1km HBM data. Compared to the original 
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results, we observed comparable ORs for O3 during the second trimester and PM2.5 during the 

second trimester and full pregnancy period in the capture-area analyses. However, attenuated 

ORs were observed for O3 during the first trimester and the full pregnancy period, and no 

significant association was found for PM2.5 in the first trimester. On the other hand, the results 

from the interpolated HBM in the 1km×1km resolution showed consistent ORs with the original 

results (see Supplemental Material, Table S3). Fourthly, we assessed whether adjusting for 

smoking during pregnancy may bias the findings, and we observed consistent ORs with the 

original results. We also analyzed the data without adjusting for season of conception, and 

consistent results were observed except for the slightly attenuated OR for O3 in the first trimester 

(see Supplemental Material, Table S4). Lastly, a stratified analyses by urbanization was 

performed to examine the potential over adjustment of it, and no statistically difference was 

observed between the non-stratified results and the stratified results (see Supplemental Material, 

Table S5).  

The results of the co-pollutant models are provided in Supplemental Material, Table S6. Figure 1 

compares the results obtained from single- and co-pollutant continuous models. The ORs for O3 

after adjusting for PM2.5 were almost identical to the ORs from the single pollutant model. 

However, the ORs for PM2.5 during the first trimester and the full pregnancy attenuated after 

adjusting for O3, and no association was observed for PM2.5 during the second trimester in the 

co-pollutant model (OR=1.02; 95% CI: 0.98, 1.07 compared with OR=1.15; 95% CI: 1.10, 1.20 

from the single pollutant model). 

Discussion 

We examined the association of GDM with PM2.5 and O3 during different pregnancy periods 

using Florida birth vital statistics records and the EPA and CDC’s HBM air pollution data which 
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has both good spatial and temporal coverage. When assessed in single-pollutant models, GDM 

was significantly associated with per 5-unit increases in both PM2.5 and O3 during the first and 

second trimesters and the full pregnancy. The associations were also found in co-pollutant 

models for PM2.5 exposure during first trimester and O3 exposure during all pregnancy periods 

we examined. The associations persisted with adjustment for confounding by maternal 

characteristics such as age, race/ethnicity, education, marital status, prenatal care, season and 

year of conception, urbanization, and median household income at census block group level. The 

results of this study add to the emerging evidence linking air pollution exposure during 

pregnancy to pregnancy complications such as GDM.  

 The causal mechanisms underlying the associations between air pollution and GDM are still 

unclear; however, the results observed in this study are consistent with several potential 

pathways suggested by previous studies. Ambient air pollutants such as PM and O3 have been 

reported to be associated with increased insulin resistance, dyslipidemia, and systemic metabolic 

dysfunction (Andersen et al. 2012; Chuang et al. 2011; Coogan et al. 2012; Kelishadi et al. 2009; 

Kim and Hong 2012; Kramer et al. 2010; Puett et al. 2011; Sun et al. 2013), which are all 

precursors associated with GDM. PM contains many toxic chemicals that are regarded as 

reactive oxygen species (ROS) (Lemaire and Livingstone 1997; Sun et al. 2006), which can 

cause oxidative damage on target tissues (Ames et al. 1993). The imbalance between the 

production of ROS and antioxidant defenses is acknowledged as one of the main causes of 

insulin signaling pathways alternations (Lamb and Goldstein 2008), and a number of studies 

have linked ROS to insulin resistance (Goldstein et al. 2005; Schulz et al. 2007). In addition, a 

recent animal study also showed O3’s ability to induce glucose intolerance and systemic 

metabolic effects (Bass et al. 2013). In their study on young and aged brown Norway rats, Bass 
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et al. observed increased α2-macroglobulin, adiponectin and osteopontin as well as decreased 

phosphorylated insulin receptor substrate-1 in liver and adipose tissues following acute O3 

exposure. Endoplasmic reticular stress was suggested to be the consequence of O3 induced acute 

metabolic impairment. Furthermore, another potential pathway induced by air pollution is 

inflammation, which may also lead to the development of insulin resistance (Everett et al. 2010; 

Hotamisligil et al. 1993).  

Cigarette smoking has been widely reported to be associated with type 2 diabetes (Willi et al. 

2007; Zhu et al. 2014), and we initially considered it as a potential confounder in our analyses. 

However, given the fact that smoking is not generally considered a risk factor for GDM as well 

as the consistent results we observed with or without adjusting for it in the sensitivity analyses, 

we finally present results without adjusting for smoking. In addition, although the underlying 

mechanisms remain unknown, our findings that air pollution may have an impact on risk of 

GDM does not conflict with the null association between smoking and GDM since their toxic 

components are largely different.  

Our study has several strengths. First, compared to the air monitoring data that have been widely 

used in other studies, the daily temporal resolution and the 12km×12km spatial resolution of 

HBM air pollution data used in this study allowed us to estimate mean air pollution 

concentrations during different pregnancy periods without excluding subjects not covered by air 

monitors, thus reducing the potential for selection bias. Second, previous studies focused only on 

small areas and examined limited types of air pollutants. With the HBM air pollution data, we 

are able to include all pregnant women in the study period throughout the entire state of Florida 

and investigate the association between GDM and two common air pollutants, PM2.5 and O3, 

which have not been reported in the extant literature. Furthermore, we used both single- and co-
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pollutant models to examine the association between air pollution and GDM. The robust results 

of O3 observed from different models suggest that it may have effects on GDM independent of 

PM2.5. This finding is consistent with recent experimental studies (Bass et al. 2013). It is also 

consistent with the positive association found between NOx and GDM (Malmqvist et al. 2013) 

since NOx is one main precursor of O3 (Sillman 1999). Finally, the robust results from the 

sensitivity analyses suggested that the study was not likely to be largely biased by the missing 

data, exposure and outcome misclassifications, and under-adjustment of smoking during 

pregnancy or over-adjustments of season of conception and urbanization.  

This study had several limitations. First, it is possible that GDM may be underdiagnosed in the 

source vital statistics records. Second, as reported by American Diabetes Association, more 

women of childbearing age have type 2 diabetes due to an epidemic of obesity and diabetes in 

recent years (American Diabetes Association 2013). This trend may result in an increase in the 

number of women with undiagnosed type 2 diabetes, leading to potential misclassification of 

GDM in this study. However, since our study period covered the years 2003-2005, our results are 

less likely to be biased by the effects of undiagnosed diabetes in recent years. Third, information 

on daily mobility and behavior patterns were not available for this study. The absence of these 

factors may introduce misclassifications of exposure. A high correlation between personal 

monitored air pollution measurement and monthly-aggregated modeled air pollution 

measurement has been reported in a cohort of 85 pregnant women in Manchester and Blackpool, 

UK (Hannam et al. 2013), although we cannot assess its comparability to our study due to the 

lack of daily mobility data. Fourth, residential mobility during pregnancy was also not available 

in this study. It may be possible that some subjects in this study lived elsewhere in the early stage 

of their pregnancy and thus were exposed to different levels of air pollution. Fifth, although the 
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use of HBM air pollution data can avoid selection bias, the 12km×12km resolution is very crude. 

While the spatial variability of O3 is low, the variability of PM2.5 may be a concern, which 

includes a large-scale regional component and a local source component. Isakov et al (2012) 

suggested that the regional component provides most of the mass, going as far as to use PM2.5 as 

an example of spatially homogenous pollutants. Therefore, exposure to PM2.5 is not likely to 

have extremely fine-scale variability in most places in Florida. In addition, highly variable 

exposure fields would also be inappropriate for use with residential address only. However, 

future studies with higher spatial resolution modelling data and detailed time-activity patterns are 

warranted. Sixth, although several important confounders have been included in this study, no 

information on other risk factors for GDM such as pre-pregnancy BMI, family history of type-2 

diabetes, and physical activity was available. These unadjusted factors may influence the results. 

For example, if obese women are more likely to live in areas with higher air pollution, the 

observed effects of air pollution on GDM in this study may be overestimated without controlling 

for this factor. In addition, low population densities, poor street connectivity and lack of 

sidewalks in rural areas have been linked to increased physical inactivity and obesity (Eberhardt 

and Pamuk 2004), which are also characterized by having higher O3 concentrations. Although 

we adjusted for urbanization in this study, residual confounding may still exist. Thus, future 

studies with more detailed information on these factors were warranted to confirm our findings. 

Another potential limitation of the study is the unavailability of traffic noise data. Traffic noise 

induces a stress response and disturbs sleep, which has been associated with higher levels of 

stress hormone and decreased insulin levels and sensitivity (Sørensen et al. 2013). Both maternal 

stress and/or disturbances of sleep during pregnancy increase the risk of GDM. Since road traffic 

is the main source for both air pollution with PM2.5 and noise in urban areas, the mutual 
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confounding is a concern. Finally, the results observed in birth registry data may also be 

influenced by the fixed cohort bias (Strand et al. 2011). Fixed cohort bias is a type of selection 

bias which could happen in retrospective cohorts with a fixed start and end date when short 

pregnancies are missed at the start of the study, and longer pregnancies are missed at the end.  As 

GDM is linked to preterm birth, fixed cohort bias may exist if GDM cases are more likely to be 

excluded at the beginning and to be included at the end of the study.  However, given the facts 

that fixed cohort bias tend to decrease when the study has longer study period and/or when it has 

day and month of the start date (i.e. January 1st, 2004) just before day and month of the end date 

(i.e. December 31st, 2005), the potential for this bias was reduced in this study.  

Conclusion 

Using Florida birth vital statistics records, we observed a positive association between increased 

prevalence of GDM and exposure to PM2.5 and O3 during each trimester of pregnancy and the 

full pregnancy among women giving birth in 2004 and 2005. This study suggests the need for 

greater attention on stronger air pollution controls to improve the health of pregnant women and 

their offspring.  
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Table 1. Exposure information concerning PM2.5 and O3 by gestational diabetes mellitus (GDM) status among women who gave birth 

from 2004 to 2005 in Florida, USA (n=14,032 with GDM, n=396,235 without GDM, and total n=410,267). 

Exposure Trimester 1 Trimester 2 Full Pregnancy 
Statistics GDM No GDM Total GDM No GDM Total GDM No GDM Total 

PM2.5 (µg/m3)          
Mean±SD 9.84±2.16 9.72±2.07 9.73±2.07 9.94±2.09 9.88±2.06 9.88±2.06 10.03±1.71 9.93±1.67 9.93±1.67 

Median 9.75 9.64 9.65 9.87 9.76 9.76 9.97 9.90 9.91 
IQR 2.68 2.61 2.61 2.63 2.61 2.61 2.06 2.02 2.02 

O3 (ppb)          
Mean±SD 37.71±6.14 37.20±6.04 37.22±6.04 38.17±6.10 37.52±6.10 37.54±6.10 37.85±4.01 37.38±4.10 37.40±4.10 

Median 36.73 36.48 36.48 37.65 36.92 36.95 38.40 37.82 37.84 
IQR 8.24 7.82 7.83 8.46 7.99 8.00 6.94 7.10 7.09 

Correlation between PM2.5 and O3 0.39 0.39 0.39 0.35 0.34 0.34 0.21 0.22 0.22 
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Table 2. Maternal characteristics by gestational diabetes mellitus (GDM) status among women 

who gave birth from 2004 to 2005 in Florida, USA. 

Maternal Characteristics GDM 
(n=14,032) 

n (%) 

No GDM 
(n=396,235) 

n (%) 

Total 
(n=410,267) 

n (%) 
Maternal age (years)    

<20 451(3.2) 44,064(11.1) 44,515(10.9) 
20-24 2,125(15.1) 103,600(26.2) 105,725(25.8) 
25-29 3,466(24.7) 103,679(26.2) 107,145(26.1) 
30-34 4,265(30.4) 87,758(22.2) 92,023(22.4) 
35-39 2,844(20.3) 44,608(11.3) 47,452(11.6) 
≥40 880(6.3) 12,482(3.2) 13,362(3.3) 

Missing 1(0.0) 44(0.0) 45(0.0) 
Race/ethnicity    

Non-Hispanic White 6,674(47.6) 188,029(47.5) 194,703(47.5) 
Non-Hispanic Black 2,041(14.6) 70,355(17.8) 72,396(17.7) 
Mexican American 1,253(8.9) 28,370(7.2) 29,623(7.2) 

Puerto Rican 634(4.5) 18,831(4.8) 19,465(4.7) 
Cuban American 590(4.2) 20,123(5.1) 20,713(5.1) 
Haitian American 541(3.9) 12,573(3.2) 13,114(3.2) 

Others 2,299(16.4) 57,948(14.6) 60,247(14.7) 
Missing 0(0.0) 6(0.0) 6(0.0) 

Maternal education    
<High school 2,524(18.0) 83,066(21.0) 85,590(20.9) 

High school or equivalent 4,207(30.0) 126,013(31.8) 130,220(31.7) 
>High school 7,213(51.4) 183,423(46.3) 190,636(46.5) 

Missing 88(0.6) 3,733(0.9) 3,821(0.9) 
Marital status    

Married 9,697(69.1) 232,727(58.7) 242,424(59.1) 
Not married 4,335(30.9) 163,425(41.2) 167,760(40.9) 

Missing 0(0.0) 83(0.0) 83(0.0) 
Smoking during pregnancy    

No 12,769(91.0) 360,016(90.9) 37,2785(90.9) 
Yes, and <10 cigarettes/day 483(3.4) 14,163(3.6) 14,646(3.6) 
Yes, and ≥10 cigarettes/day 581(4.1) 16,852(4.3) 17,433(4.3) 

Missing 199(1.4) 5,204(1.3) 5403(1.3) 
Season of conception    

Warm 6,942(49.5) 192,430(48.6) 199,372(48.6) 
Cool 7,090(50.5) 203,805(51.4) 210,895(51.4) 

Year of conception    
2003 4,131(29.4) 142,945(36.1) 147,076(35.9) 
2004 7,479(53.3) 199,682(50.4) 207,161(50.5) 
2005 2,422(17.3) 53,608(13.5) 56,030(13.7) 

Prenatal care began    
No care 59(0.4) 4,987(1.3) 5,046(1.2) 

First trimester 7,698(54.9) 188,869(47.7) 196,567(47.9) 
Second trimester 2,022(14.4) 57,504(14.5) 59,526(14.5) 

Third trimester 570(4.1) 14,115(3.6) 14,685(3.6) 
Missing 3,683(26.3) 130,760(33.0) 134,443(32.8) 

Urbanization of Residential Area    
Urban 12,017(85.6) 342,936(86.6) 354,953(86.5) 
Rural 2,015(14.4) 53,299(13.5) 55,314(13.5) 

Median household income (US $)    
<29,663 3,326(23.7) 99,224(25.0) 102,550(25.0) 

29,663-38,056 3,494(24.9) 99,047(25.0) 102,541(25.0) 
38,056-49,375 3,648(26.0) 98,825(24.9) 102,473(25.0) 

≥49,375 3,564(25.4) 99,139(25.0) 102,703(25.0) 
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Table 3. ORs for risk of gestational diabetes mellitus (GDM) by air pollutants (PM2.5 and O3) 

and pregnancy period of exposure among women who gave birth from 2004 to 2005 in Florida, 

USA. 

Exposure 
 

n (GDM/Total) Unadjusted OR 
(95% CI) 

n (GDM/Total)a Adjusted ORb 
(95% CI) 

PM2.5 (per 5 µg/m3) 
Trimester 1 14,032/410,267 1.15(1.10, 1.19) 13,943/406,334 1.16(1.11, 1.21)  
Trimester 2 14,032/410,267 1.08(1.04, 1.12) 13,943/406,334 1.15(1.10, 1.20)  
Full pregnancy  14,032/410,267 1.19(1.13, 1.25)  13,943/406,334 1.20(1.13, 1.26)  

 
O3 (per 5 ppb) 
Trimester 1 14,032/410,267 1.07(1.06, 1.09)  13,943/406,334 1.09(1.07, 1.11)  
Trimester 2 14,032/410,267 1.09(1.08, 1.10)  13,943/406,334 1.12(1.10, 1.14)  
Full pregnancy  14,032/410,267 1.16(1.13, 1.18)  13,943/406,334 1.18(1.15, 1.21)  
aWomen with complete data for all covariates. bAdjusted for maternal age, race, education, marital status, season of 
conception, year of conception, prenatal care began, urbanization, and median household income. 
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Figure legend 

Figure 1. Adjusted log(OR) for risk of gestational diabetes mellitus with per 5 units increase in 

gestational exposure to pollutant for single- and co-pollutant models among women who gave 

birth from 2004 to 2005 in Florida, USA. The diamond reflects the central estimate; the 

horizontal line represents the 95% CI.  
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Figure 1. 
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